Десятый в химической таблице элементов. Периодическая система химических элементов Д.И.Менделеева

Как пользоваться таблицей Менделеева? Для непосвященного человека читать таблицу Менделеева – всё равно, что для гнома смотреть на древние руны эльфов. А таблица Менделеева может рассказать о мире очень многое.

Помимо того, что сослужит вам службу на экзамене, она еще и просто незаменима при решении огромного количества химических и физических задач. Но как ее читать? К счастью, сегодня этому искусству может научиться каждый. В этой статье расскажем, как понять таблицу Менделеева.

Периодическая система химических элементов (таблица Менделеева) – это классификация химических элементов, которая устанавливает зависимость различных свойств элементов от заряда атомного ядра.

История создания Таблицы

Дмитрий Иванович Менделеев был не простым химиком, если кто-то так думает. Это был химик, физик, геолог, метролог, эколог, экономист, нефтяник, воздухоплаватель, приборостроитель и педагог. За свою жизнь ученый успел провести фундаментально много исследований в самых разных областях знаний. Например, широко распространено мнение, что именно Менделеев вычислил идеальную крепость водки – 40 градусов.

Не знаем, как Менделеев относился к водке, но точно известно, что его диссертация на тему «Рассуждение о соединении спирта с водой» не имела к водке никакого отношения и рассматривала концентрации спирта от 70 градусов. При всех заслугах ученого, открытие периодического закона химических элементов – одного их фундаментальных законов природы, принесло ему самую широкую известность.


Существует легенда, согласно которой периодическая система приснилась ученому, после чего ему осталось лишь доработать явившуюся идею. Но, если бы все было так просто.. Данная версия о создании таблицы Менделеева, по-видимому, не более чем легенда. На вопрос о том, как была открыта таблица, сам Дмитрий Иванович отвечал: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово»

В середине девятнадцатого века попытки упорядочить известные химические элементы (известно было 63 элемента) параллельно предпринимались несколькими учеными. Например, в 1862 году Александр Эмиль Шанкуртуа разместил элементы вдоль винтовой линии и отметил циклическое повторение химических свойств.

Химик и музыкант Джон Александр Ньюлендс предложил свой вариант периодической таблицы в 1866 году. Интересен тот факт, что в расположении элементов ученый пытался обнаружить некую мистическую музыкальную гармонию. В числе прочих попыток была и попытка Менделеева, которая увенчалась успехом.


В 1869 году была опубликована первая схема таблицы, а день 1 марта 1869 года считается днем открытия периодического закона. Суть открытия Менделеева состояла в том, что свойства элементов с ростом атомной массы изменяются не монотонно, а периодически.

Первый вариант таблицы содержал всего 63 элемента, но Менделеев предпринял ряд очень нестандартных решений. Так, он догадался оставлять в таблице место для еще неоткрытых элементов, а также изменил атомные массы некоторых элементов. Принципиальная правильность закона, выведенного Менделеевым, подтвердилась очень скоро, после открытия галлия, скандия и германия, существование которых было предсказано ученым.

Современный вид таблицы Менделеева

Ниже приведем саму таблицу

Сегодня для упорядочения элементов вместо атомного веса (атомной массы) используется понятие атомного числа (числа протонов в ядре). В таблице содержится 120 элементов, которые расположены слева направо в порядке возрастания атомного числа (числа протонов)

Столбцы таблицы представляют собой так называемые группы, а строки – периоды. В таблице 18 групп и 8 периодов.

  1. Металлические свойства элементов при движении вдоль периода слева направо уменьшаются, а в обратном направлении – увеличиваются.
  2. Размеры атомов при перемещении слева направо вдоль периодов уменьшаются.
  3. При движении сверху вниз по группе увеличиваются восстановительные металлические свойства.
  4. Окислительные и неметаллические свойства при движении вдоль периода слева направо увеличиваются.

Что мы узнаем об элементе по таблице? Для примера, возьмем третий элемент в таблице – литий, и рассмотрим его подробно.

Первым делом мы видим сам символ элемента и его название под ним. В верхнем левом углу находится атомный номер элемента, в порядке которого элемент расположен в таблице. Атомный номер, как уже было сказано, равен числу протонов в ядре. Число положительных протонов, как правило, равно числу отрицательных электронов в атоме (за исключением изотопов).

Атомная масса указана под атомным числом (в данном варианте таблицы). Если округлить атомную массу до ближайшего целого, мы получим так называемое массовое число. Разность массового числа и атомного числа дает количество нейтронов в ядре. Так, число нейтронов в ядре гелия равно двум, а у лития – четырем.

Вот и закончился наш курс "Таблица Менделеева для чайников". В завершение, предлагаем вам посмотреть тематическое видео, и надеемся, что вопрос о том, как пользоваться периодической таблицей Менделеева, стал вам более понятен. Напоминаем, что изучать новый предмет всегда эффективнее не одному, а при помощи опытного наставника. Именно поэтому, никогда не стоит забывать о , который с радостью поделится с вами своими знаниями и опытом.

Периодическая система химических элементов (таблица Менделеева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы). Всего предложено несколько сотен вариантов изображения периодической системы (аналитических кривых, таблиц, геометрических фигур и т. п.). В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.

Периодическая система химических элементов Д.И.Менделеева

ПЕРИОДЫ РЯДЫ ГРУППЫ ЭЛЕМЕНТОВ
I II III IV V VI VII VIII
I 1 H
1,00795

4,002602
гелий

II 2 Li
6,9412
Be
9,01218
B
10,812
С
12,0108
углерод
N
14,0067
азот
O
15,9994
кислород
F
18,99840
фтор

20,179
неон

III 3 Na
22,98977
Mg
24,305
Al
26,98154
Si
28,086
кремний
P
30,97376
фосфор
S
32,06
сера
Cl
35,453
хлор

Ar 18
39,948
аргон

IV 4 K
39,0983
Ca
40,08
Sc
44,9559
Ti
47,90
титан
V
50,9415
ванадий
Cr
51,996
хром
Mn
54,9380
марганец
Fe
55,847
железо
Co
58,9332
кобальт
Ni
58,70
никель
Cu
63,546
Zn
65,38
Ga
69,72
Ge
72,59
германий
As
74,9216
мышьяк
Se
78,96
селен
Br
79,904
бром

83,80
криптон

V 5 Rb
85,4678
Sr
87,62
Y
88,9059
Zr
91,22
цирконий
Nb
92,9064
ниобий
Mo
95,94
молибден
Tc
98,9062
технеций
Ru
101,07
рутений
Rh
102,9055
родий
Pd
106,4
палладий
Ag
107,868
Cd
112,41
In
114,82
Sn
118,69
олово
Sb
121,75
сурьма
Te
127,60
теллур
I
126,9045
иод

131,30
ксенон

VI 6 Cs
132,9054
Ba
137,33
La
138,9
Hf
178,49
гафний
Ta
180,9479
тантал
W
183,85
вольфрам
Re
186,207
рений
Os
190,2
осмий
Ir
192,22
иридий
Pt
195,09
платина
Au
196,9665
Hg
200,59
Tl
204,37
таллий
Pb
207,2
свинец
Bi
208,9
висмут
Po
209
полоний
At
210
астат

222
радон

VII 7 Fr
223
Ra
226,0
Ac
227
актиний ××
Rf
261
резерфордий
Db
262
дубний
Sg
266
сиборгий
Bh
269
борий
Hs
269
хассий
Mt
268
мейтнерий
Ds
271
дармштадтий
Rg
272

Сn
285

Uut 113
284 унунтрий

Uug
289
унунквадий

Uup 115
288
унунпентий
Uuh 116
293
унунгексий
Uus 117
294
унунсептий

Uuо 118

295
унуноктий

La
138,9
лантан
Ce
140,1
церий
Pr
140,9
празеодим
Nd
144,2
неодим
Pm
145
прометий
Sm
150,4
самарий
Eu
151,9
европий
Gd
157,3
гадолиний
Tb
158,9
тербий
Dy
162,5
диспрозий
Ho
164,9
гольмий
Er
167,3
эрбий
Tm
168,9
тулий
Yb
173,0
иттербий
Lu
174,9
лютеций
Ac
227
актиний
Th
232,0
торий
Pa
231,0
протактиний
U
238,0
уран
Np
237
нептуний
Pu
244
плутоний
Am
243
америций
Cm
247
кюрий
Bk
247
берклий
Cf
251
калифорний
Es
252
эйнштейний
Fm
257
фермий
Md
258
менделевий
No
259
нобелий
Lr
262
лоуренсий

Открытие, сделанное Русским химиком Менделеевым, сыграло (безусловно) наиболее важную роль в развитии науки, а именно в развитии атомно-молекулярного учения. Это открытие позволило получить наиболее понятные, и простые в изучении, представления о простых и сложных химических соединениях. Только благодаря таблице мы имеем те понятия об элементах, которыми пользуемся в современном мире. В ХХ веке проявилась прогнозирующая роль периодической системы при оценке химических свойств, трансурановых элементов, показанная еще создателем таблицы.

Разработанная в ХIХ веке, периодическая таблица Менделеева в интересах науки химии, дала готовую систематизацию типов атомов, для развития ФИЗИКИ в ХХ веке (физика атома и ядра атома). В начале ХХ века, ученые физики, путем исследований установили, что порядковый номер, (он же атомный), есть и мера электрического заряда атомного ядра этого элемента. А номер периода (т.е. горизонтального ряда), определяет число электронных оболочек атома. Так же выяснилось, что номер вертикального ряда таблицы определяет квантовую структуру внешней оболочки элемента, (этим самым, элементы одного ряда, обязаны сходством химических свойств).

Открытие Русского ученого, ознаменовало собой, новую эру в истории мировой науки, это открытие позволило не только совершить огромный скачек в химии, но так же было бесценно для ряда других направлений науки. Таблица Менделеева дала стройную систему сведений об элементах, на основе её, появилась возможность делать научные выводы, и даже предвидеть некоторые открытия.

Таблица МенделееваОдна из особенностей периодической таблицы Менделеева, состоит в том, что группа (колонка в таблице), имеет более существенные выражения периодической тенденции, чем для периодов или блоков. В наше время, теория квантовой механики и атомной структуры объясняет групповую сущность элементов тем, что они имеют одинаковые электронные конфигурации валентных оболочек, и как следствие, элементы которые находятся в пределах одой колонки, располагают очень схожими, (одинаковыми), особенностями электронной конфигурации, со схожими химическими особенностями. Так же наблюдается явная тенденция стабильного изменения свойств по мере возрастания атомной массы. Надо заметить, что в некоторых областях периодической таблицы, (к примеру, в блоках D и F), сходства горизонтальные, более заметны, чем вертикальные.

Таблица Менделеева содержит группы, которым присваиваются порядковые номера от 1 до 18 (с лева, на право), согласно международной системе именования групп. В былое время, для идентификации групп, использовались римские цифры. В Америке существовала практика ставить после римской цифры, литер «А» при расположении группы в блоках S и P, или литер «В» - для групп находящихся в блоке D. Идентификаторы, применявшиеся в то время, это то же самое, что и последняя цифра современных указателей в наше время (на пример наименование IVB, соответствует элементам 4 группы в наше время, а IVA - это 14 группа элементов). В Европейских странах того времени, использовалась похожая система, но тут, литера «А» относилась к группам до 10, а литера «В» - после 10 включительно. Но группы 8,9,10 имели идентификатор VIII, как одна тройная группа. Эти названия групп закончили свое существование после того как в 1988 году вступила в силу, новая система нотации ИЮПАК, которой пользуются и сейчас.

Многие группы получили несистематические названия травиального характера, (к примеру - «щелочноземельные металлы», или «галогены», и другие подобные названия). Таких названий не получили группы с 3 по 14, из за того что они в меньшей степени схожи между собой и имеют меньшее соответствие вертикальным закономерностям, их обычно, называют либо по номеру, либо по названию первого элемента группы (титановая, кобальтовая и тому подобно).

Химические элементы относящиеся к одной группе таблицы Менделеева проявляют определенные тенденции по электроотрицательности, атомному радиусу и энергии ионизации. В одной группе, по направлению сверху вниз, радиус атома возрастает, по мере заполнения энергетических уровней, удаляются, от ядра, валентные электроны элемента, при этом снижается энергия ионизации и ослабевают связи в атоме, что упрощает изъятие электронов. Снижается, так же, электроотрицательность, это следствие того, что возрастает расстояние между ядром и валентными электронами. Но из этих закономерностей так же есть исключения, на пример электроотрицательность возрастает, вместо того чтобы убывать, в группе 11, в направлении сверху вниз. В таблице Менделеева есть строка, которая называется «Период».

Среди групп, есть и такие у которых более значимыми являются горизонтальные направления (в отличии от других, у которых большее значение имеют вертикальные направления), к таким группам относится блок F, в котором лантаноиды и актиноиды формируют две важные горизонтальные последовательности.

Элементы показывают определенные закономерности в отношении атомного радиуса, электроотрицательности, энергии ионизации, и в энергии сродства к электрону. Из-за того, что у каждого следующего элемента количество заряженных частиц возрастает, а электроны притягиваются к ядру, атомный радиус уменьшается в направлении слева направо, вместе с этим увеличивается энергия ионизации, при возрастании связи в атоме - возрастает сложность изъятия электрона. Металлам, расположенным в левой части таблицы, характерен меньший показатель энергии сродства к электрону, и соответственно, в правой части показатель энергии сродства к электрону, у не металлов, этот показатель больше, (не считая благородных газов).

Разные области периодической таблицы Менделеева, в зависимости от того на какой оболочке атома, находится последний электрон, и в виду значимости электронной оболочки, принято описывать как блоки.

В S-блок, входит две первые группы элементов, (щелочные и щелочноземельные металлы, водород и гелий).
В P-блок, входят шест последних групп, с 13 по 18 (согласно ИЮПАК, или по системе принятой в Америке - с IIIA до VIIIA), этот блок так же включает в себя все металлоиды.

Блок - D, группы с 3 по 12 (ИЮПАК, или с IIIB до IIB по-американски), в этот блок включены все переходные металлы.
Блок - F, обычно выносится за пределы периодической таблицы, и включает в себя лантаноиды и актиноиды.

Периодический закон был открыт Д.И. Менделеевым в ходе работы над текстом учебника «Основы химии», когда он столкнулся с трудностями систематизации фактического материала. К середине февраля 1869 г., обдумывая структуру учебника, ученый постепенно пришел к выводу, что свойства простых веществ и атомные массы элементов связывает некая закономерность.

Открытие периодической таблицы элементов было совершено не случайно, это был результат огромного труда, длительной и кропотливой работы, которая была затрачена и самим Дмитрием Ивановичем, и множеством химиков из числа его предшественников и современников. «Когда я стал окончательно оформлять мою классификацию элементов, я написал на отдельных карточках каждый элемент и его соединения, и затем, расположив их в порядке групп и рядов, получил первую наглядную таблицу периодического закона. Но это был лишь заключительный аккорд, итог всего предыдущего труда…» - говорил ученый. Менделеев подчеркивал, что его открытие было итогом, завершившим собой двадцатилетнее размышление о связях между элементами, обдумывание со всех сторон взаимоотношений элементов.

17 февраля (1 марта) рукопись статьи, содержащая таблицу под названием «Опыт системы элементов, основанной на их атомном весе и химическом сходстве», была закончена и сдана в печать с пометками для наборщиков и с датой «17 февраля 1869 г.». Сообщение об открытии Менделеева было сделано редактором «Русского химического общества» профессором Н.А. Меншуткиным на заседании общества 22 февраля (6 марта) 1869 г. Сам Менделеев на заседании не присутствовал, так как в это время по заданию Вольного экономического общества обследовал сыроварни Тверской и Новгородской губерний.

В первом варианте системы элементы были расставлены ученым по девятнадцати горизонтальным рядам и по шести вертикальным столбцам. 17 февраля (1 марта) открытие периодического закона отнюдь не завершилось, а только началось. Его разработку и углубление Дмитрий Иванович продолжал еще в течение почти трех лет. В 1870 г. Менделеев в «Основах химии» опубликовал второй вариант системы («Естественную систему элементов»): горизонтальные столбцы элементов-аналогов превратились в восемь вертикально расположенных групп; шесть вертикальных столбцов первого варианта превратились в периоды, начинавшиеся щелочным металлом и заканчивающиеся галогеном. Каждый период был разбит на два ряда; элементы разных вошедших в группу рядов образовали подгруппы.

Сущность открытия Менделеева заключалась в том, что с ростом атомной массы химических элементов их свойства меняются не монотонно, а периодически. После определенного количества разных по свойствам элементов, расположенных по возрастанию атомного веса, свойства начинают повторяться. Отличием работы Менделеева от работ его предшественников было то, что основ для классификации элементов у Менделеева была не одна, а две - атомная масса и химическое сходство. Для того, чтобы периодичность полностью соблюдалась, Менделеев исправил атомные массы некоторых элементов, несколько элементов разместил в своей системе вопреки принятым в то время представлениям об их сходстве с другими, оставил в таблице пустые клетки, где должны были разместиться пока не открытые элементы.

В 1871 г. на основе этих работ Менделеев сформулировал Периодический закон, форма которого со временем была несколько усовершенствована.

Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, но и явилась могучим орудием для дальнейших исследований. В то время, когда Менделеев на основе открытого им периодического закона составлял свою таблицу, многие элементы еще не были известны. В течение следующих 15 лет предсказания Менделеева блестяще подтвердились; все три ожидаемых элемента были открыты (Ga, Sc, Ge), что было величайшим триумфом периодического закона.

СТАТЬЯ «МЕНДЕЛЕЕВ»

Менделеев (Дмитрий Иванович) - проф., род. в Тобольске, 27 января 1834 г.). Отец его, Иван Павлович, директор тобольской гимназии, вскоре ослеп и умер. Менделеев, десятилетним мальчиком, остался на попечении своей матери, Марии Дмитриевны, урожденной Корнильевой, женщины выдающегося ума и пользовавшейся общим почетом в местном интеллигентном обществе. Детство и гимназические годы М. проходят в обстановке, благоприятной для образования самобытного и независимого характера: мать была сторонницей свободного пробуждения природного призвания. Любовь к чтению и изучению ясно выразилась в М. только по окончании гимназического курса, когда мать, решив направить своего сына к науке,вывезла его 15-летним мальчиком из Сибири сначала в Москву, а затем через год в Петербург, где и поместила в педагогический институт… В институте началось настоящее, всепоглощающее штудирование всех отраслей положительной науки… По окончании курса в институте, вследствие пошатнувшегося здоровья, уехал в Крым и был определен учителем гимназии, сначала в Симферополе, затем в Одессе. Но уже в 1856г. он опять вернулся в Петербург, поступил приват-доцентом в СПб. унив. и защитил диссертацию «Об удельных объемах», на степень магистра химии и физики… В 1859 г. М. был командирован за границу… В 1861 г. М. снова вступил приват-доцентом в Спб. университет. Вскоре затем опубликовал курс «Органической химии» и статью «О пределе СnН2n+ углеводородов». В 1863 г. М. был определен профессором CПб. технологического института и в течение нескольких лет много занимался вопросами техники: ездил на Кавказ для изучения нефти около Баку, производил сельскохозяйственные опыты Имп. Вольного экономического общества, издавал технические руководства и т. п. В 1865 г. производил исследования растворов спирта по их удельному весу, что послужило предметом докторской диссертации, которую и защищал в следующем году. Профессором СПб. унив. по кафедре химии М. был избран и определен в 1866 г. С тех пор научная его деятельность принимает такие размеры и разнообразие, что в кратком очерке можно указать только на важнейшие труды. В 1868 - 1870 гг. он пишет свои «Основы химии», где впервые проводится принцип его периодической системы элементов, давшей возможность предвидеть существование новых, еще неоткрытых элементов и с точностью предсказать свойства как их самих, так и их разнообразнейших соединений. В 1871 - 1875 гг. занимается исследованием упругости и расширения газов и публикует свое сочинение «Об упругости газов». В 1876 г. по поручению правительства едет в Пенсильванию для осмотра нефтяных американских месторождений и затем несколько раз на Кавказ для изучения экономических условий нефтяного производства и условий добычи нефти, повлекших за собой широкое развитие нефтяной промышленности в России; сам занимается исследованием нефтяных углеводородов, обо всем публикует несколько сочинений и в них разбирает вопрос о происхождении нефти. Приблизительно тогда же занимается вопросами, относящимися к воздухоплаванию и сопротивлению жидкостей, сопровождая свои изучения публикацией отдельных сочинений. В 80-х гг. он снова обращается к изучению растворов, результатом чего появилось соч. «Исследование водных растворов по удельному весу», выводы которого нашли столько последователей среди химиков всех стран. В 1887 г., во время полного солнечного затмения, поднимается один на аэростате в Клину, сам производит рискованную поправку клапанов, делает шар послушным и заносит в летописи этого явления все, что удалось заметить. В 1888 г. изучает на месте экономические условия Донецкой каменноугольной области. В 1890 г. М. прекратил чтение своего курса неорганической химии в СПб. университете. Другие обширные экономические и государственные задачи с этого времени начинают особенно занимать его. Назначенный членом совета торговли и мануфактур, принимает самое деятельное участие в выработке и систематическом проведении покровительственного для русской обрабатывающей промышленности тарифа и публикует сочинение «Толковый тариф 1890 г.», трактующее по всем статьям, почему для России наступила необходимость такого покровительства. Одновременно он привлекается военным и морским министерствами к вопросу о перевооружении русской армии и флота для выработки типа бездымного пороха и после командировки в Англию и Францию, которые тогда уже имели свой порох, назначается в1891 г. консультантом при управляющем морским министерством по пороховым вопросам и, работая вместе со служащими (своими бывшими учениками) в научно-технической лаборатории морского ведомства, открытой специально ради изучения означенного вопроса, уже в самом начале 1892 г. указывает требующийся тип бездымного пороха, названного пироколлодийным, универсального и легко приспособляемого ко всяким огнестрельным орудиям. С открытием в министерстве финансов палаты мер и весов, в 1893 г., определяется в ней ученым хранителем мер и весов и начинает издание «Временника», в котором публикуются все измерительные исследования, производимые в палате. Чуткий и отзывчивый ко всяким научным вопросам первостепенной важности, М. также живо интересовался и другими явлениями текущей общественной русской жизни, и везде, где возможно, сказал свое слово… С 1880 г. он начал интересоваться художественным миром, особенно русским, собирает художественные коллекции и т. п., а в 1894 г. избирается действительным членом Имп.академии художеств... Первостепенной важности разнообразные научные вопросы, бывшие предметом изучения М., по своей многочисленности не могут быть здесь перечислены. Он написал до 140 работ, статей и книг. Но время для оценки исторического значения этих трудов еще не наступило, и М., будем надеяться, еще долго не перестанет исследовать и высказывать свое мощное слово по вновь возникающим вопросам, как науки, так и жизни...

РУССКОЕ ХИМИЧЕСКОЕ ОБЩЕСТВО

Русское химическое общество - научная организация, основанная при Санкт-Петербургском университете в 1868 г. и представлявшая собой добровольное объединение российских химиков.

О необходимости создания Общества было заявлено на 1-м Съезде русских естествоиспытателей и врачей, состоявшемся в Санкт-Петербурге в конце декабря 1867 - начале января 1868 г. На Съезде было оглашено решение участников Химической секции:

«Химическая секция заявила единодушное желание соединиться в Химическое общество для общения уже сложившихся сил русских химиков. Секция полагает, что это общество будет иметь членов во всех городах России, и что его издание будет включать труды всех русских химиков, печатаемые на русском языке».

К этому времени уже были учреждены химические общества в нескольких европейских странах: Лондонское химическое общество (1841), Химическое общество Франции (1857), Немецкое химическое общество (1867); Американское химическое общество было основано в 1876 г.

Устав Русского химического общества, составленный в основном Д.И. Менделеевым, был утвержден Министерством народного просвещения 26 октября 1868 г., а первое заседание Общества состоялось 6 ноября 1868 г. Первоначально в его состав вошли 35 химиков из Петербурга, Казани, Москвы, Варшавы, Киева, Харькова и Одессы. В первый год своего существования РХО выросло с 35 до 60 членов и продолжало плавно расти в последующие годы (129 - в 1879 г., 237 - в 1889 г., 293 - в 1899 г., 364 - в 1909 г., 565 - в 1917 г.).

В 1869 г. у РХО появился собственный печатный орган - «Журнал Русского химического общества» (ЖРХО); журнал выходил 9 раз в год (ежемесячно, кроме летних месяцев).

В 1878 г. РХО объединилось с Русским физическим обществом (основано в 1872 г.) в Русское физико-химическое общество. Первыми Президентами РФХО были А.М. Бутлеров (в 1878-1882 гг.) и Д.И. Менделеев (в 1883-1887 гг.). В связи с объединением с 1879 г. (с 11-го тома) «Журнал Русского химического общества» был переименован в «Журнал Русского физико-химического общества». Периодичность издания составляла 10 номеров в год; журнал состоял из двух частей - химической (ЖРХО) и физической (ЖРФО).

На страницах ЖРХО впервые были напечатаны многие труды классиков русской химии. Можно особо отметить работы Д.И. Менделеева по созданию и развитию периодической системы элементов и А.М. Бутлерова, связанные с разработкой его теории строения органических соединений… За период с 1869 по 1930 г. в ЖРХО было опубликовано 5067 оригинальных химических исследований, печатались также рефераты и обзорные статьи по отдельным вопросам химии, переводы наиболее интересных работ из иностранных журналов.

РФХО стало учредителем Менделеевских съездов по общей и прикладной химии; три первых съезда прошли в С.-Петербурге в 1907, 1911 и 1922 гг. В 1919 г. издание ЖРФХО было приостановлено и возобновлено лишь в 1924 г.

Периодическая система химических элементов - это классификация химических элементов, созданная Д. И. Менделеевым на основе открытого им в 1869 г. периодического закона.

Д. И. Менделеев

Согласно современной формулировке этого закона, в непрерывном ряду элементов, расположенных в порядке возрастания величины положительного заряда ядер их атомов, периодически повторяются элементы со сходными свойствами.

Периодическая система химических элементов, представленная в виде таблицы, состоит из периодов, рядов и групп.

В начале каждого периода (за исключением первого) находится элементе ярко выраженными металлическими свойствами (щелочной металл).


Условные обозначения к цветной таблице: 1 - химический знак элемента; 2 - название; 3 - атомная масса (атомный вес); 4 - порядковый номер; 5 - распределение электронов по слоям.

По мере возрастания порядкового номера элемента, равного величине положительного заряда ядра его атома, постепенно ослабевают металлические и нарастают неметаллические свойства. Предпоследним элементом в каждом периоде является элемент с ярко выраженными неметаллическими свойствами (), а последним - инертный газ. В I периоде находятся 2 элемента, во II и III - по 8 элементов, в IV и V - по 18, в VI - 32 и в VII (не завершенном периоде) - 17 элементов.

Первые три периода называют малыми периодами, каждый из них состоит из одного горизонтального ряда; остальные - большими периодами, каждый из которых (исключая VII период) состоит из двух горизонтальных рядов - четного (верхнего) и нечетного (нижнего). В четных рядах больших периодов находятся только металлы. Свойства элементов в этих рядах с возрастанием порядкового номера изменяются слабо. Свойства элементов в нечетных рядах больших периодов меняются. В VI периоде за лантаном следуют 14 элементов, весьма сходных по химическим свойствам. Эти элементы, называемые лантаноидами, приведены отдельно под основной таблицей. Аналогично представлены в таблице и актиноиды - элементы, следующие за актинием.


В таблице имеется девять вертикальных групп. Номер группы, за редким исключением, равен высшей положительной валентности элементов данной группы. Каждая группа, исключая нулевую и восьмую, подразделяется на подгруппы. - главную (расположена правее) и побочную. В главных подгруппах с увеличением порядкового номера усиливаются металлические и ослабевают неметаллические свойства элементов.

Таким образом, химические и ряд физических свойств элементов определяются местом, которое занимает данный элемент в периодической системе.

Биогенные элементы, т. е. элементы, входящие в состав организмов и выполняющие в нем определенную биологическую роль, занимают верхнюю часть таблицы Менделеева. В голубой цвет окрашены клетки, занимаемые элементами, составляющими основную массу (более 99%) живого вещества, в розовый цвет - клетки, занимаемые микроэлементами (см.).

Периодическая система химических элементов является крупнейшим достижением современного естествознания и ярким выражением наиболее общих диалектических законов природы.

См. также , Атомный вес.

Периодическая система химических элементов - естественная классификация химических элементов, созданная Д. И. Менделеевым на основе открытого им в 1869 г. периодического закона.

В первоначальной формулировке периодический закон Д. И. Менделеева утверждал: свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины атомных весов элементов. В дальнейшем с развитием учения о строении атома было показано, что более точной характеристикой каждого элемента является не атомный вес (см.), а величина положительного заряда ядра атома элемента, равная порядковому (атомному) номеру этого элемента в периодической системе Д. И. Менделеева. Число положительных зарядов ядра атома равно числу электронов, окружающих ядро атома, поскольку атомы в целом электронейтральны. В свете этих данных периодический закон формулируется так: свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины положительного заряда ядер их атомов. Это значит, что в непрерывном ряду элементов, расположенных в порядке возрастания положительных зарядов ядер их атомов, будут периодически повторяться элементы со сходными свойствами.

Табличная форма периодической системы химических элементов представлена в ее современном виде. Она состоит из периодов, рядов и групп. Период представляет последовательный горизонтальный ряд элементов, расположенных в порядке возрастания положительного заряда ядер их атомов.

В начале каждого периода (за исключением первого) находится элемент с ярко выраженными металлическими свойствами (щелочной металл). Затем по мере увеличения порядкового номера постепенно ослабевают металлические и нарастают неметаллические свойства элементов. Предпоследним элементом в каждом периоде является элемент с ярко выраженными неметаллическими свойствами (галоген), а последним - инертный газ. I период состоит из двух элементов, роль щелочного металла и галогена здесь одновременно выполняет водород. II и III периоды включают по 8 элементов, названных Менделеевым типическими. IV и V периоды насчитывают по 18 элементов, VI-32. VII период еще не завершен и пополняется искусственно создаваемыми элементами; в настоящее время в этом периоде насчитывается 17 элементов. I, II и III периоды называют малыми, каждый из них состоит из одного горизонтального ряда, IV-VII- большими: они (за исключением VII) включают два горизонтальных ряда - четный (верхний) и нечетный (нижний). В четных рядах больших периодов находятся только металлы, и изменение свойств элементов в ряду слева направо выражено слабо.

В нечетных рядах больших периодов свойства элементов в ряду изменяются так же, как свойства типических элементов. В четном ряду VI периода после лантана следует 14 элементов [называемых лантанидами (см.), лантаноидами, редкоземельными элементами], сходных по химическим свойствам с лантаном и между собой. Перечень их приводится отдельно под таблицей.

Отдельно выписаны и приведены под таблицей элементы, следующие за актинием- актиниды (актиноиды).

В периодической системе химических элементов по вертикалям расположено девять групп. Номер группы равен высшей положительной валентности (см.) элементов этой группы. Исключение составляют фтор (бывает только отрицательно одновалентным) и бром (не бывает семивалентным); кроме того, медь, серебро, золото могут проявлять валентность больше +1 (Cu-1 и 2, Ag и Au-1 и 3), а из элементов VIII группы валентностью +8 обладают только осмий и рутений. Каждая группа, за исключением восьмой и нулевой, делится на две подгруппы: главную (расположена правее) и побочную. В главные подгруппы входят типические элементы и элементы больших периодов, в побочные - только элементы больших периодов и притом металлы.

По химическим свойствам элементы каждой подгруппы данной группы значительно отличаются друг от друга и только высшая положительная валентность одинакова для всех элементов данной группы. В главных подгруппах сверху вниз усиливаются металлические свойства элементов и ослабевают неметаллические (так, франций является элементом с наиболее ярко выраженными металлическими свойствами, а фтор - неметаллическими). Таким образом, место элемента в периодической системе Менделеева (порядковый номер) определяет его свойства, которые представляют собой среднее из свойств соседних элементов по вертикали и горизонтали.

Некоторые группы элементов носят особые названия. Так, элементы главных подгрупп I группы называют щелочными металлами, II группы - щелочноземельными металлами, VII группы - галогенами, элементы, расположенные за ураном,- трансурановыми. Элементы, которые входят в состав организмов, принимают участие в процессах обмена веществ и обладают явно выраженной биологической ролью, называют биогенными элементами. Все они занимают верхнюю часть таблицы Д. И. Менделеева. Это в первую очередь О, С, Н, N, Са, Р, К, S, Na, Cl, Mg и Fe, составляющие основную массу живого вещества (более 99%). Места, занимаемые этими элементами в периодической системе, окрашены в светло-голубой цвет. Биогенные элементы, которых в организме очень мало (от 10 -3 до 10 -14 %), называют микроэлементами (см.). В клетках периодической системы, окрашенных в желтый цвет, помещены микроэлементы, жизненно важное значение которых для человека доказано.

Согласно теории строения атомов (см. Атом) химические свойства элементов зависят в основном от числа электронов на внешней электронной оболочке. Периодическое изменение свойств элементов с увеличением положительного заряда атомных ядер объясняется периодическим повторением строения наружной электронной оболочки (энергетического уровня) атомов.

В малых периодах с увеличением положительного заряда ядра возрастает число электронов на внешней оболочке от 1 до 2 в I периоде и от 1 до 8 во II и III периодах. Отсюда изменение свойств элементов в периоде от щелочного металла до инертного газа. Внешняя электронная оболочка, содержащая 8 электронов, является завершенной и энергетически устойчивой (элементы нулевой группы химически инертны).

В больших периодах в четных рядах с ростом положительного заряда ядер число электронов на внешней оболочке остается постоянным (1 или 2) и идет заполнение электронами второй снаружи оболочки. Отсюда медленное изменение свойств элементов в четных рядах. В нечетных рядах больших периодов с увеличением заряда ядер идет заполнение электронами внешней оболочки (от 1 до 8) и свойства элементов изменяются так, как и у типических элементов.

Число электронных оболочек в атоме равно номеру периода. Атомы элементов главных подгрупп имеют на внешних оболочках число электронов, равное номеру группы. Атомы элементов побочных подгрупп содержат на внешних оболочках один или два электрона. Этим объясняется различие в свойствах элементов главной и побочной подгрупп. Номер группы указывает возможное число электронов, которые могут участвовать в образовании химических (валентных) связей (см. Молекула), поэтому такие электроны называют валентными. У элементов побочных подгрупп валентными являются не только электроны внешних оболочек, но и предпоследних. Число и строение электронных оболочек указано в прилагаемой периодической системе химических элементов.

Периодический закон Д. И. Менделеева и основанная на нем система имеют исключительно большое значение в науке и практике. Периодический закон и система явились основой для открытия новых химических элементов, точного определения их атомных весов, развития учения о строении атомов, установления геохимических законов распределения элементов в земной коре и развития современных представлений о живом веществе, состав которого и связанные с ним закономерности находятся в соответствии с периодической системой. Биологическая активность элементов и их содержание в организме также во многом определяются местом, которое они занимают в периодической системе Менделеева. Так, с увеличением порядкового номера в ряде групп возрастает токсичность элементов и уменьшается их содержание в организме. Периодический закон является ярким выражением наиболее общих диалектических законов развития природы.

Четыре способа присоединения нуклонов
Механизмы присоединения нуклонов можно разбить на четыре типа, S, P, D и F. Эти типы присоединения отражает цветовой фон в представленном нами варианте таблицы Д.И. Менделеева.
Первый тип присоединения, это S схема, когда нуклоны присоединяются к ядру по вертикальной оси. Отображение присоединенных нуклонов этого типа, в межъядерном пространстве, ныне идентифицируется, как S электроны, хотя никаких S электронов в этой зоне нет, а есть только сферические области объемного пространственного заряда, которые обеспечивают молекулярное взаимодействие.
Второй тип присоединения - это P схема, когда нуклоны присоединяются к ядру в горизонтальной плоскости. Отображение этих нуклонов в межъядерном пространстве идентифицировано, как P электроны, хотя это тоже, всего лишь области пространственного заряда, генерируемые ядром в межъядерном пространстве.
Третий тип присоединения - это D схема, когда нуклоны присоединяются к нейтронам в горизонтальной плоскости, и наконец, четвертый тип присоединения - это F схема, когда нуклоны присоединяются к нейтронам по вертикальной оси. Каждый тип присоединения придает атому свойства, характерные для этого типа связи, поэтому в составе периодов таблицы Д.И. Менделеева давно выделены подгруппы, по типу S, P, D и F связи.
Поскольку при присоединении каждого последующего нуклона образуется изотоп или предшествующего или последующего элемента, то точное расположение нуклонов по типу S, P, D и F связи можно показать только при помощи Таблицы известных изотопов (нуклидов), вариантом которой (из Википедии) мы воспользовались.
Эту таблицу мы разбили на периоды (см. Таблицы заполнения периодов), а в каждом периоде указали, по какой схеме присоединяется каждый нуклон. Поскольку в соответствии с микроквантовой теорией каждый нуклон может присоединиться к ядру только в строго определенном месте, то количество и схемы присоединения нуклонов в каждом периоде отличаются, но во всех периодах таблицы Д.И. Менделеева законы присоединения нуклонов исполняются ЕДИНООБРАЗНО для всех нуклонов без исключения.
Как вы видите, во II и III периоде присоединение нуклонов идет только по S и P схемам, в IV и V периодах – по S, P и D схемам, а в VI и VII периодах – по S, P, D и F схемам. При этом оказалось, что законы присоединения нуклонов исполняются настолько точно, что нам не составило большого труда рассчитать состав ядра конечных элементов VII периода, которые в таблице Д.И. Менделеева имеют номера 113, 114, 115, 116 и 118.
По нашим расчетам, последний элемент VII периода, который мы назвали Rs («Россий» от «Россия»), состоит из 314 нуклонов и имеет изотопы 314, 315, 316, 317 и 318. Предшествующий ему элемент Nr («Новороссий» от «Новороссия») состоит из 313 нуклонов. Мы будем весьма благодарны всем, кто сможет подтвердить или опровергнуть наши расчеты.
Честно говоря, мы сами поражены, насколько точно работает Вселенский Конструктор, который обеспечивает присоединение каждого последующего нуклона только на свое, единственно правильное место, а если нуклон встал неправильно, то Конструктор обеспечивает распад атома, и из его запчастей собирает новый атом. В своих фильмах мы показали только главные законы работы Вселенского Конструктора, но в его работе столько нюансов, что, чтобы разобраться в них, потребуются усилия многих поколений ученых.
Но в законах работы Вселенского Конструктора человечеству разобраться необходимо, если оно заинтересовано в технологическом прогрессе, поскольку знание принципов работы Вселенского Конструктора открывает совершенно новые перспективы во всех областях человеческой деятельности – от создания уникальных конструкционных материалов до сборки живых организмов.

Заполнение второго периода таблицы химических элементов

Заполнение третьего периода таблицы химических элементов

Заполнение четвертого периода таблицы химических элементов

Заполнение пятого периода таблицы химических элементов

Заполнение шестого периода таблицы химических элементов

Заполнение седьмого периода таблицы химических элементов