Где можно наблюдать броуновское движение. Физические явления: броуновское движение

В VI классе вы познакомились с диффузией – перемешиванием газов, жидкостей и твердых тел при непосредственном контакте. Это явление можно объяснить беспорядочным движением молекул. Но самое очевидное доказательство движения молекул можно получить, наблюдая в микроскоп мельчайшие взвешенные в воде частицы какого-либо твердого вещества. Эти частицы совершают беспорядочное движение, которое называют броуновским .

Броуновское движение – это тепловое движение взвешенных в жидкости (или газе) частиц.

Наблюдение броуновского движения. Английский ботаник Броун впервые наблюдал это явление в 1827 г., рассматривая в микроскоп взвешенные в воде споры плауна. Сейчас обычно используют частички краски гуммигут, нерастворимой в воде. Эти частички совершают хаотическое движение. Самым поразительным и непривычным является то, что это движение никогда не прекращается. Мы ведь привыкли к тому, что любое движущееся тело рано или поздно останавливается. Броуновское движение – тепловое движение, и оно не может прекратиться. С увеличением температуры интенсивность его растет. На рисунке 6 приведена схема движения броуновских частиц. Положения частиц, отмеченные точками, определены через равные промежутки времени – 30 с. Эти точки соединены прямыми линиями. В действительности траектории частиц гораздо сложнее.

Броуновское движение можно наблюдать в газе. Его совершают взвешенные в воздухе частицы пыли или дыма.

В настоящее время понятие «броуновское движение» используется в более широком смысле. Так, например, броуновским движением является дрожание стрелок чувствительных измерительных приборов. Оно происходит из-за теплового движения атомов деталей приборов и окружающей среды.

Объяснение броуновского движения. Объяснение броуновского движения может быть дано только на основе молекулярно-кинетической теории. Причина броуновского движения частицы в том, что удары молекул в нее не компенсируют друг друга. На рисунке 7 схематически показано положение одной броуновской частицы и ближайших к ней молекул. При хаотическом движении молекул импульсы, передаваемые ими броуновской частице, например слева и справа, неодинаковы. Поэтому отлична от нуля результирующая сила давления, которая и вызывает изменение движения броуновской частицы.

Среднее давление имеет определенное значение как в газе, так и в жидкости. Но всегда происходят незначительные случайные отклонения от среднего. Чем меньше площадь тела, тем значительнее относительные изменения силы давления, действующей на данную площадь. Так, если площадка имеет размеры порядка нескольких диаметров молекулы, то действующая на нее сила меняется скачкообразно от нуля до некоторого значения при попадании молекулы в эту площадку.

Молекулярно-кинетическая теория броуновского движения была создана А. Эйнштейном в 1905 г. Построение теории броуновского движения и ее экспериментальное подтверждение французским физиком Ж Перреном окончательно завершили победу молекулярно-кинетической теории.

Одним из наиболее убедительных доказательств реальности движения молекул служит явление так называемого броуновского движения, открытого в 1827 г. английским ботаником Броуном при изучении взвешенных в воде мельчайших спор. Он обнаружил, при рассмотрении под микроскопом с большим увеличением, что эти споры находятся в непрерывном беспорядочном движении, как бы исполняя дикий фантастический танец.

Дальнейшие опыты показали, что эти движения не связаны с биологическим происхождением частиц или с какими-либо движениями жидкости. Подобные движения совершают любые малые частицы, взвешенные в жидкости или газе. Такого рода беспорядочные движения совершают, например, частицы дыма в неподвижном воздухе. Такое беспорядочное движение частиц, взвешенных в жидкости или газе, и получило название броуновского движения.

Специальные исследования показали, что характер броуновского движения зависит от свойств жидкости или газа, в которых взвешены частицы, но не зависит от свойств вещества самих частиц. Скорость движения броуновских частиц возрастает с повышением температуры и с уменьшением размеров частиц.

Все эти закономерности легко объяснить, если мы примем, что движения взвешенных частиц возникают вследствие ударов, испытываемых ими со стороны движущихся молекул жидкости или газа, в которых они находятся.

Конечно, каждая броуновская частица подвергается таким ударам со всех сторон. При полной беспорядочности молекулярных движений можно, казалось бы, ожидать, что число ударов, обрушивающихся на частицу с какого-нибудь направления, должно быть в точности равно числу ударов с противоположного направления,

так что все эти толчки должны полностью компенсировать друг друга и частицы должны оставаться неподвижными.

Так именно и происходит, если частицы не слишком малы. Но когда мы имеем дело с микроскопическими частицами см), дело обстоит иначе. Ведь из того факта, что молекулярные движения хаотичны, следует лишь, что в среднем число ударов разных направлений одинаково. Но в такой статистической системе, как жидкость или газ, неизбежны и отклонения от средних значений. Такие отклонения от средних значений тех или иных величин, которые происходят в малом объеме или в течение малых промежутков времени, называются флуктуациями. Если в жидкости или газе находится тело обычных размеров, то число толчков, которое оно испытывает со стороны молекул, так велико, что нельзя заметить ни отдельных толчков, ни случайного преобладания толчков одного направления над толчками других направлений. Для малых же частиц общее число испытываемых ими толчков сравнительно невелико, так что преобладание числа ударов то одного, то другого направления становится заметным, и именно благодаря таким флуктуациям числа ударов и возникают те характерные, как бы судорожные движения взвешенных частиц, которые и называются броуновским движением.

Ясно, что движения броуновских частиц - это не молекулярные движения: мы видим не результат удара одной молекулы, а результат преобладания числа ударов одного направления над числом ударов в противоположном направлении. Броуновское движение лишь очень ясно обнаруживает само существование беспорядочных молекулярных движений.

Таким образом, броуновское движение объясняется тем, что благодаря случайной неодинаковости чисел ударов молекул о частицу с разных направлений возникает некоторая равнодействующая сила определенного направления. Так как флуктуации обычно бывают кратковременными, то через короткий промежуток времени направление равнодействующей изменится, а вместе с ней изменится и направление перемещения частицы. Отсюда наблюдающаяся хаотичность броуновских движений, отражающая хаотичность молекулярного движения.

Приведенное качественное объяснение броуновского движения мы теперь дополним количественным рассмотрением этого явления. Количественная теория его была впервые дана Эйнштейном и, независимо, Смолуховским (1905 г.). Мы приведем здесь более простой, чем у этих авторов, вывод основного соотношения этой теории.

Вследствие неполной компенсации ударов молекул на броуновскую частицу действует, как мы видели, некоторая результирующая сила под действием которой частица и движется. Кроме этой силы на частицу действует сила трения вызванная вязкостью среды и направленная против силы

Для простоты предположим, что частица имеет форму сферы радиуса а. Тогда сила трения может быть выражена формулой Стокса:

где коэффициент внутреннего трения жидкости (или газа), скорость движения частицы. Уравнение движения частицы (второй закон Ньютона) имеет поэтому вид:

Здесь масса частицы, ее радиус-вектор относительно произвольной системы координат, скорость частицы и равнодействующая сил, вызванных ударами молекул.

Рассмотрим проекцию радиуса-вектора на одну из координатных осей, например на ось Для этой составляющей уравнение (7,1) перепишется в виде:

где составляющая результирующей силы по оси

Наша задача состоит в том, чтобы найти смещение х броуновской частицы, которое она получает под действием ударов молекул. Каждая из частиц все время подвергается соударениям с молекулами, после чего она меняет направление своего движения. Различные частицы получают смещения, отличающиеся как по величине, так и по направлению. Вероятное значение суммы смещений всех частиц равно нулю, так как смещения с равной вероятностью могут иметь и положительный, и отрицательный знак. Среднее значение проекции смещения частиц х будет поэтому равно нулю. Не будет, однако, равно нулю среднее значение квадрата смещения, т. е. величина хтак как не изменяет своего знака при изменении знака х. Преобразуем поэтому уравнение (7.2) так, чтобы в него входила величина Для этого умножим обе части этого уравнения на

Используем очевидные тождества:

Подставив эти выражения в (7.3), получим:

Это равенство справедливо для любой частицы и поэтому оно справедливо также и для средних значений входящих в него величин,

если усреднение вести по достаточно большому числу частиц. Поэтому можно написать:

где среднее значение квадрата перемещения частицы, среднее значение квадрата ее скорости. Что касается среднего значения величины входящей в равенство, то оно равно нулю, так как для большого числа частиц одинаково часто принимают как положительные, так и отрицательные значения. Уравнение (7.2) прикимает поэтому вид:

Величина в этом уравнении представляет собой среднее значение квадрата проекций скорости на ось Так как движения частиц вполне хаотичны, то средние значения квадратов проекций скорости по всем трем координатным осям должны быть равны друг другу, т. е.

Очевидно также, что сумма этих величин должна быть равна среднему значению квадрата скорости частиц

Следовательно,

Таким образом, интересующее нас выражение, входящее в (7.4), равно:

Величина есть средняя кинетическая энергия броуновской частицы. Сталкиваясь с молекулами жидкости или газа, броуновские частицы обмениваются с ними энергией и находятся в тепловом равновесии со средой, в которой они движутся. Поэтому средняя кинетическая энергия поступательного движения броуновской частицы должна быть равна средней кинетической энергии молекул

жидкости (или газа), которая, как мы знаем, равна

и следовательно

То обстоятельство, что средняя кинетическая энергия броуновской частицы равна (как и для газовой молекулы!), имеет принципиальное значение. Действительно, выведенное нами ранее основное уравнение (3.1) справедливо для любых не взаимодействующих друг с другом частиц, совершающих хаотические движения. Будут ли это невидимые глазом молекулы или значительно более крупные броуновские частицы, содержащие миллиарды молекул, - безразлично. С молекулярно-кинетической точки зрения броуновскую частицу можно трактовать как гигантскую молекулу. Поэтому выражение для средней кинетической энергии такой частицы должно быть таким же, как и для молекулы. Скорости же броуновских частиц, конечно, несравненно меньше, соответственно их большей массе.

Вернемся теперь к уравнению (7.4) и, учтя (7.5), перепишем его

Это уравнение легко интегрируется. Обозначив получаем:

и после разделения переменных наше уравнение преобразуется в виде:

Интегрируя левую часть этого уравнения в пределах от 0 до а правую от до получаем:

Величина как легко убедиться, в обычных условиях опыта ничтожно мала. Действительно, размеры броуновских частиц не превышают см, вязкость жидкости обычно близка к вязкости воды, т. е. приблизительно равна (в системе единиц плотность вещества частиц порядка единицы, Имея в виду, что масса частицы равна , мы получим, что показатель степени при таков, что величиной можно пренебречь. Следовательно, если отрезок времени между последовательными наблюдениями за броуновской частицей превышает что, конечно, всегда имеет место, то

Для конечных промежутков времени и соответствующих перемещений уравнение (7.6) можно переписать в виде:

Среднее значение квадрата смещения броуновской частицы за промежуток времени вдоль оси X, или любой другой оси, пропорционально этому промежутку времени.

Формула (7.7) позволяет вычислять среднее значение квадрата перемещений, причем среднее берется по всем частицам, участвующим в явлении. Но эта формула справедлива и для среднего значения квадрата многих последовательных перемещений одной-единственной частицы за равные промежутки времени, С экспериментальной точки зрения удобнее наблюдать именно перемещения одной частицы. Такие наблюдения и были проведены Перреном в 1909 г.

Движение частиц Перрен наблюдал через микроскоп, окуляр которого был снабжен сеткой взаимно перпендикулярных линий, служивших координатной системой. Пользуясь сеткой, Перрен отмечал на ней последовательные положения одной облюбованной им частицы через определенные промежутки времени (например, 30 с). Соединив затем точки, отмечающие положения частицы на сетке, он получил картину, подобную той, которая изображена на рис, 7. На этом рисунке показаны как смещения частицы, так и их проекции на ось

Следует иметь в виду, что движения частицы значительно сложнее, чем об этом можно судить по рис. 7, так как здесь отмечены положения через не слишком малые промежутки времени (порядка 30 с). Если уменьшить эти промежутки, то окажется, что каждый прямолинейный отрезок на рисунке развернется в такую же сложную зигзагообразнуютраекторию, как и весь рис. 7.

Так как постоянная может быть определена из уравнения сестояния.

Опыты Перрена имели большое значение для окончательного обоснования молекулярно-кинетической теории.

Сегодня мы подробно рассмотрим важную тему - дадим определение броуновскому движению маленьких кусочков материи в жидкости или газе.

Карта и координаты

Некоторые школьники, замученные скучными уроками, не понимают, зачем изучать физику. А между тем, именно эта наука когда-то позволила открыть Америку!

Начнем издалека. Древним цивилизациям Средиземноморья в каком-то смысле повезло: они развивались на берегу закрытого внутреннего водоема. Средиземное море потому так и называется, что оно со всех сторон окружено сушей. И древние путешественники могли довольно далеко продвинуться со своей экспедицией, не теряя из вида берегов. Очертания суши помогали ориентироваться. И первые карты составлялись скорее описательно, чем географически. Благодаря этим относительно недалеким плаваниям греки, финикийцы и египтяне хорошо научились строить корабли. А где лучшее оборудование - там и стремление раздвинуть границы своего мира.

Поэтому в один прекрасный день европейские державы решили выйти в океан. Во время плавания по бескрайним просторам между материками моряки долгие месяцы видели только воду, и им надо было как-то ориентироваться. Определить свои координаты помогло изобретение точных часов и качественного компаса.

Часы и компас

Изобретение маленьких ручных хронометров очень выручило мореплавателей. Чтобы точно определить, где они находятся, им надо было иметь простейший инструмент, который измерял высоту солнца над горизонтом, и знать, когда именно полдень. А благодаря компасу капитаны судов знали, куда они направляются. И часы, и свойства магнитной стрелки изучали и создавали физики. Благодаря этому европейцам был открыт весь мир.

Новые континенты представляли собой terra incognita, неизведанные земли. На них росли странные растения и водились непонятные животные.

Растения и физика

Все естествоиспытатели цивилизованного мира ринулись изучать эти новые странные экологические системы. И конечно же, они стремились извлечь из них выгоду.

Роберт Броун был английским ботаником. Он совершал поездки в Австралию и на Тасманию, собирал там коллекции растений. Уже дома, в Англии, он много работал над описанием и классификацией привезенного материала. И ученый этот был очень дотошным. Однажды, наблюдая за движением пыльцы в соке растений, он заметил: мелкие частицы постоянно совершают хаотические зигзагообразные перемещения. В этом и состоит определение броуновского движения мелких элементов в газах и жидкостях. Благодаря открытию потрясающий ботаник вписал свое имя в историю физики!

Броун и Гуи

В европейской науке так принято: называть эффект или явление именем того, кто его обнаружил. Но часто это бывает случайно. А вот человек, который описывает, открывает важность или более подробно исследует физический закон, оказывается в тени. Так случилось и с французом Луи Жоржем Гуи. Именно он дал определение броуновскому движению (7 класс о нем точно не слышит, когда изучает эту тему по физике).

Исследования Гуи и свойства броуновского движения

Французский экспериментатор Луи Жорж Гуи наблюдал движение разного типа частиц в нескольких жидкостях, в том числе и в растворах. Наука того времени уже умела точно определять размер кусочков вещества до десятых долей микрометра. Исследуя, что такое броуновское движение (определение в физике этому явлению дал именно Гуи), ученый понял: интенсивность перемещения частиц увеличивается, если их поместить в менее вязкую среду. Будучи экспериментатором широкого спектра, он подвергал взвесь действию света и электромагнитных полей различной мощности. Ученый выяснил, что эти факторы никак не влияют на хаотические зигзагообразные скачки частиц. Гуи однозначно показал, что доказывает броуновское движение: тепловое перемещение молекул жидкости или газа.

Коллектив и масса

А теперь подробнее опишем механизм зигзагообразных скачков небольших кусочков материи в жидкости.

Любое вещество состоит из атомов или молекул. Эти элементы мира очень маленькие, ни один оптический микроскоп не способен их увидеть. В жидкости они все время колеблются и перемещаются. Когда любая видимая частица попадает в раствор, ее масса в тысячи раз больше одного атома. Броуновское движение молекул жидкости совершается хаотически. Но тем не менее все атомы или молекулы представляют собой коллектив, они связаны друг с другом, как люди, которые взялись за руки. Поэтому иногда так случается, что атомы жидкости с одной стороны частицы движутся так, что «давят» на нее, при этом с другой стороны от частицы создается менее плотная среда. Поэтому пылинка перемещается в пространстве раствора. В другом месте коллективное движение молекул жидкости случайно действует на другую сторону более массивного компонента. Именно так и совершается броуновское движение частиц.

Время и Эйнштейн

Если вещество обладает ненулевой температурой, его атомы совершают тепловые колебания. Поэтому даже в очень холодной или переохлажденной жидкости существует броуновское движение. Эти хаотические перескоки маленьких взвешенных частиц никогда не прекращаются.

Альберт Эйнштейн, пожалуй, самый знаменитый ученый двадцатого века. Всем, кто хоть сколько-нибудь интересуется физикой, известна формула E = mc 2 . Также многие могут вспомнить о фотоэффекте, за который ему дали Нобелевскую премию, и о специальной теории относительности. Но мало кто знает, что Эйнштейн разработал формулу для броуновского движения.

На основании молекулярно-кинетической теории ученый вывел коэффициент диффузии взвешенных частиц в жидкости. И произошло это в 1905 году. Формула выглядит так:

D = (R * T) / (6 * N A * a * π * ξ),

где D - искомый коэффициент, R - это универсальная газовая постоянная, T — абсолютная температура (выражается в Кельвинах), N A — постоянная Авогадро (соответствует одному молю вещества, или примерно 10 23 молекул), a — приблизительный средний радиус частиц, ξ — динамическая вязкость жидкости или раствора.

А уже в 1908 году французский физик Жан Перрен со своими студентами экспериментально доказали верность вычислений Эйнштейна.

Одна частица в поле воин

Выше мы описывали коллективное воздействие среды на много частиц. Но и один чужеродный элемент в жидкости может дать некоторые закономерности и зависимости. Например, если наблюдать за броуновской частицей долгое время, то можно зафиксировать все ее перемещения. И из этого хаоса возникнет стройная система. Среднее продвижение броуновской частицы вдоль какого-то одного направления пропорционально времени.

При экспериментах над частицей в жидкости были уточнены следующие величины:

  • постоянная Больцмана;
  • число Авогадро.

Помимо линейного движения, также свойственно хаотическое вращение. И среднее угловое смещение также пропорционально времени наблюдения.

Размеры и формы

После таких рассуждений может возникнуть закономерный вопрос: почему этот эффект не наблюдается для больших тел? Потому что когда протяженность погруженного в жидкость объекта больше определенной величины, то все эти случайные коллективные «толчки» молекул превращаются в постоянное давление, так как усредняются. И на тело уже действует общая Архимеда. Таким образом, большой кусок железа тонет, а металлическая пыль плавает в воде.

Размер частиц, на примере которых выявляется флуктуация молекул жидкости, не должен превышать 5 микрометров. Что касается объектов с большими размерами, то здесь этот эффект заметен не будет.

Броуновское движение бро́уновское движе́ние

(брауновское движение), беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, под влиянием ударов молекул окружающей среды; открыто Р. Броуном.

БРОУНОВСКОЕ ДВИЖЕНИЕ

БРО́УНОВСКОЕ ДВИЖЕ́НИЕ (брауновское движение), беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, происходящее под действием ударов молекул окружающей среды; открыто Р. Броуном (см. БРОУН Роберт (ботаник)) в 1827 г.
При наблюдении в микроскопе взвеси цветочной пыльцы в воде Броун наблюдал хаотичное движение частиц, возникающее «не от движения жидкости и не от ее испарения». Видимые только под микроскопом взвешенные частицы размером 1 мкм и менее совершали неупорядоченные независимые движения, описывая сложные зигзагообразные траектории. Броуновское движение не ослабевает со временем и не зависит от химических свойств среды, его интенсивность увеличивается с ростом температуры среды и с уменьшением ее вязкости и размеров частиц. Даже качественно объяснить причины броуновского движения удалось только через 50 лет, когда причину броуновского движения стали связывать с ударами молекул жидкости о поверхность взвешенной в ней частицы.
Первая количественная теория броуновского движения была дана А. Эйнштейном (см. ЭЙНШТЕЙН Альберт) и М. Смолуховским (см. СМОЛУХОВСКИЙ Мариан) в 1905-06 гг. на основе молекулярно-кинетической теории. Было показано, что случайные блуждания броуновских частиц связаны с их участием в тепловом движении наравне с молекулами той среды, в которой они взвешены. Частицы обладают в среднем такой же кинетической энергией, но из-за большей массы имеют меньшую скорость. Теория броуновского движения объясняет случайные движения частицы действием случайных сил со стороны молекул и сил трения. Согласно этой теории, молекулы жидкости или газа находятся в постоянном тепловом движении, причем импульсы различных молекул не одинаковы по величине и направлению. Если поверхность частицы, помещенной в такую среду, мала, как это имеет место для броуновской частицы, то удары, испытываемые частицей со стороны окружающих ее молекул, не будут точно компенсироваться. Поэтому в результате «бомбардировки» молекулами броуновская частица приходит в беспорядочное движение, меняя величину и направление своей скорости примерно 10 14 раз в сек. Из этой теории следовало, что, измерив смещение частицы за определенное время и зная ее радиус и вязкость жидкости можно вычислить число Авогадро (см. АВОГАДРО ПОСТОЯННАЯ) .
Выводы теории броуновского движения были подтверждены измерениями Ж. Перрена (см. ПЕРРЕН Жан Батист) и Т. Сведберга (см. СВЕДБЕРГ Теодор) в 1906 г. На основе этих соотношений были экспериментально определены постоянная Больцмана (см. БОЛЬЦМАНА ПОСТОЯННАЯ) и постоянная Авогадро.
При наблюдении броуновского движения фиксируется положение частицы через равные промежутки времени. Чем короче промежутки времени, тем более изломанной будет выглядеть траектория движения частицы.
Закономерности броуновского движения служат наглядным подтверждением фундаментальных положений молекулярно-кинетической теории. Было окончательно установлено, что тепловая форма движения материи обусловлена хаотическим движением атомов или молекул, из которых состоят макроскопические тела.
Теория броуновского движения сыграла важную роль в обосновании статистической механики, на ней основана кинетическая теория коагуляции водных растворов. Помимо этого, она имеет и практическое значение в метрологии, так как броуновское движение рассматривают как основной фактор, ограничивающий точность измерительных приборов. Например, предел точности показаний зеркального гальванометра определяется дрожанием зеркальца, подобно броуновской частице бомбардируемого молекулами воздуха. Законами броуновского движения определяется случайное движение электронов, вызывающее шумы в электрических цепях. Диэлектрические потери в диэлектриках объясняются случайными движениями молекул-диполей, составляющих диэлектрик. Случайные движения ионов в растворах электролитов увеличивают их электрическое сопротивление.


Энциклопедический словарь . 2009 .

Смотреть что такое "броуновское движение" в других словарях:

    - (брауновское движение), беспорядочное движение малых ч ц, взвешенных в жидкости или газе, происходящее под действием ударов молекул окружающей среды. Исследовано в 1827 англ. учёным Р. Броуном (Браун; R. Brown), к рый наблюдал в микроскоп… … Физическая энциклопедия

    БРОУНОВСКОЕ ДВИЖЕНИЕ - (Brown), движение мельчайших частиц, взвешенных в жидкости, происходящее под действием столкновений между этими частицами и молекулами жидкости. Впервые оно было замечено под микроскопом англ. ботаником Броу ном в 1827 г. Если в поле зрения… … Большая медицинская энциклопедия

    - (брауновское движение) беспорядочное движение мельчайших частиц, взвешенных в жидкости или газе, под влиянием ударов молекул окружающей среды; открыто Р. Броуном … Большой Энциклопедический словарь

    БРОУНОВСКОЕ ДВИЖЕНИЕ, неупорядоченное, зигзагообразное движение частиц, взвешенных в потоке (жидкости или газа). Вызывается неравномерностью бомбардировки более крупных частиц с разных сторон более мелкими молекулами движущегося потока. Это… … Научно-технический энциклопедический словарь

    броуновское движение - – колебательное, вращательное или поступательное движение частиц дисперсной фазы под действием теплового движения молекул дисперсионной среды. Общая химия: учебник / А. В. Жолнин … Химические термины

    БРОУНОВСКОЕ ДВИЖЕНИЕ - бес порядочное движение мельчайших частиц, взвешенных в жидкости или газе, под влиянием ударов молекул окружающей среды, находящихся в тепловом движении; играет важную роль в некоторых физ. хим. процессах, ограничивает точность… … Большая политехническая энциклопедия

    броуновское движение - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Brownian motion … Справочник технического переводчика

    Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия

    Непрерывное хаотичное движение микроскопических частиц, взвешенных в газе или жидкости, обусловленное тепловым движением молекул окружающей среды. Это явление впервые было описано в 1827 шотландским ботаником Р.Броуном, исследовавшим под… … Энциклопедия Кольера

    Правильнее брауновское движение, беспорядочное движение малых (размерами в нескольких мкм и менее) частиц, взвешенных в жидкости или газе, происходящее под действием толчков со стороны молекул окружающей среды. Открыто Р. Броуном в 1827.… … Большая советская энциклопедия

Книги

  • Броуновское движение вибратора , Ю.А. Крутков , Воспроизведено в оригинальной авторской орфографии издания 1935 года (издательство`Известия академии наук СССР`). В… Категория: Математика Издатель:

«Физика - 10 класс»

Вспомните из курса физики основной школы явление диффузии.
Чем может быть объяснено это явление?

Ранее вы узнали, что такое диффузия , т. е. проникновение молекул одного вещества в межмолекулярное пространство другого вещества. Это явление определяется беспорядочным движением молекул. Этим можно объяснить, например, тот факт, что объём смеси воды и спирта меньше объёма составляющих её компонентов.

Но самое очевидное доказательство движения молекул можно получить, наблюдая в микроскоп мельчайшие, взвешенные в воде частицы какого-либо твёрдого вещества. Эти частицы совершают беспорядочное движение, которое называют броуновским .

Броуновское движение - это тепловое движение взвешенных в жидкости (или газе) частиц.


Наблюдение броуновского движения.


Английский ботаник Р. Броун (1773-1858) впервые наблюдал это явление в 1827 г., рассматривая в микроскоп взвешенные в воде споры плауна.

Позже он рассматривал и другие мелкие частицы, в том числе частички камня из египетских пирамид. Сейчас для наблюдения броуновского движения используют частички краски гуммигут, которая нерастворима в воде. Эти частички совершают беспорядочное движение. Самым поразительным и непривычным для нас является то, что это движение никогда не прекращается. Мы ведь привыкли к тому, что любое движущееся тело рано или поздно останавливается. Броун вначале думал, что споры плауна проявляют признаки жизни.

Броуновское движение - тепловое движение, и оно не может прекратиться. С увеличением температуры интенсивность его растёт.

На рисунке 8.3 приведены траектории движения броуновских частиц. Положения частиц, отмеченные точками, определены через равные промежутки времени - 30 с. Эти точки соединены прямыми линиями. В действительности траектория частиц гораздо сложнее.

Объяснение броуновского движения.


Объяснить броуновское движение можно только на основе молекулярно-кинетической теории.

«Немногие явления способны так увлечь наблюдателя, как броуновское движение. Здесь наблюдателю позволяется заглянуть за кулисы того, что совершается в природе. Перед ним открывается новый мир - безостановочная сутолока огромного числа частиц. Быстро пролетают в поле зрения микроскопа мельчайшие частицы, почти мгновенно меняя направление движения. Медленнее продвигаются более крупные частицы, но и они постоянно меняют направление движения. Большие частицы практически толкутся на месте. Их выступы явно показывают вращение частиц вокруг своей оси, которая постоянно меняет направление в пространстве. Нигде нет и следа системы или порядка. Господство слепого случая - вот какое сильное, подавляющее впечатление производит эта картина на наблюдателя». R. Поль (1884-1976).

Причина броуновского движения частицы заключается в том, что удары молекул жидкости о частицу не компенсируют друг друга.


На рисунке 8.4 схематически показано положение одной броуновской частицы и ближайших к ней молекул.

При беспорядочном движении молекул передаваемые ими броуновской частице импульсы, например слева и справа, неодинаковы. Поэтому отлична от нуля результирующая сила давления молекул жидкости на броуновскую частицу. Эта сила и вызывает изменение движения частицы.

Молекулярно-кинетическая теория броуновского движения была создана в 1905 г. А. Эйнштейном (1879-1955). Построение теории броуновского движения и её экспериментальное подтверждение французским физиком Ж. Перреном окончательно завершили победу молекулярно-кинетической теории. В 1926 г. Ж. Перрен получил Нобелевскую премию за исследование структуры вещества.


Опыты Перрена.


Идея опытов Перрена состоит в следующем. Известно, что концентрация молекул газа в атмосфере уменьшается с высотой. Если бы не было теплового движения, то все молекулы упали бы на Землю и атмосфера исчезла бы. Однако если бы не было притяжения к Земле то за счёт теплового движения молекулы покидали бы Землю, так как газ способен к неограниченному расширению. В результате действия этих противоположных факторов устанавливается определённое распределение молекул по высоте, т. е. концентрация молекул довольно быстро уменьшается с высотой. Причём чем больше масса молекул, тем быстрее с высотой убывает их концентрация.

Броуновские частицы участвуют в тепловом движении. Так как их взаимодействие пренебрежимо мало, то совокупность этих частиц в газе или жидкости можно рассматривать как идеальный газ из очень тяжёлых молекул. Следовательно, концентрация броуновских частиц в газе или жидкости в поле тяжести Земли должна убывать по тому же закону, что и концентрация молекул газа. Закон этот известен.

Перрен с помощью микроскопа большого увеличения и малой глубины поля зрения (малой глубины резкости) наблюдал броуновские частицы в очень тонких слоях жидкости. Подсчитывая концентрацию частиц на разных высотах, он нашёл, что эта концентрация убывает с высотой по тому же закону, что и концентрация молекул газа. Отличие в том, что за счёт большой массы броуновских частиц убывание происходит очень быстро.

Все эти факты свидетельствуют о правильности теории броуновского движения и о том, что броуновские частицы участвуют в тепловом движении молекул.

Подсчёт броуновских частиц на разных высотах позволил Перрену определить постоянную Авогадро совершенно новым методом. Значение этой постоянной совпало с ранее известным.